
NOTES ON NON-ARCHIMEDEAN JULIA SETS

MAX WEINREICH

1. Non-archimedean Julia sets

These are notes for a learning talk to accompany Chapter 8, Introduction to Dynamics on
Berkovich Space, of Benedetto’s Dynamics in One Non-Archimedean Variable [Ben19].

1.1. Comparative Fatou-Julia Theory.

Definition 1.1. A set of self-maps S of a metric space (X,d) is called equicontinuous on a
subset U ⊆X if, for every ϵ > 0, there exists δ > 0 such that for all maps ϕ in S, we have for
all x, y ∈ U that

d(x, y) < δ Ô⇒ d(f(x), f(y)) < ϵ.

This is much more restrictive than asking for all the maps ϕ in S to continuous. For
continuity at x, we need to say that we can arrange for f(x) and f(y) to be close together
(within ϵ) as long as x and y are sufficiently close together by δ = δ(ϵ, x). For uniform
continuity, we require further that for each map f ∈ S, the same closeness δ = δ(ϵ, f) works
across the whole domain U , independent of x. Equicontinuity says further that the same
uniform continuity bound δ works for every map f ∈ S, independent of f .

Example 1.2. If ϕ is 1-Lipschitz, then all its iterates are also 1-Lipschitz, so we can choose
δ(ϵ) = ϵ to prove that the set of iterates ϕn is equicontinuous.

Example 1.3. Consider the map ϕ of the real interval [0,1] that sends x ↦ x2. The set
of all iterates of this map is not equicontinuous in the real topology because, near 1, there
are points that eventually go near 0. Nevertheless, the iterates are equicontinuous on the
forward-invariant subset [0,1). To see this, let x ∈ [0,1) and consider a ball around x of
some small radius. After iterating enough times, that ball will be compressed to within
the interval [0,1/4), where the map ϕ is 1-Lipschitz. The so first few iterates impose some
restrictions on δ, but after those finitely many, there are no more restrictions, so we can find
δ as the minimum of the uniform continuity constants for the first few iterates.

Definition 1.4 (Complex Fatou). On P1(C), the Fatou set or domain of equicontinuity of
a rational map ϕ of degree at least 2 is the set of points admitting a neighborhood on which
the family of iterates (ϕn)∞n=1 is equicontinuous.

An equivalent definition comes from considering when the forward images of a subset
almost cover all of P1. Given a sequence of sets U1, U2, . . . , we say that sequence omits n
points if

#(P1 ∖
∞

⋃
i=1

Ui) ≥ n.

Note that the sequence may omit more than exactly n points.
1



Definition 1.5 (Classical Fatou v2). On P1(C), the Fatou set of a rational map ϕ of degree
at least 2 is the set of points admitting a neighborhood U with the property that the sequence
of forward images ϕn(U) omits 3 points.

Definition 1.6 (Classical Fatou v3). On P1(C), the Fatou set of a rational map ϕ of degree
at least 2 is the set of points admitting a neighborhood U with the property that the sequence
of forward images ϕn(U) omits uncountably many points.

There is another formulation of the Fatou set that we will not get into here, in terms
of normality; it is equivalent to the other versions by the Arzela-Ascoli theorem, but this
theorem will fail in non-archimedean contexts.

The equivalence of Definitions 1.4, and 1.5, and 1.6 is one of the first results of complex
dynamics. It uses Montel’s theorem.

Definition 1.7 (Non-archimedean Classical Fatou). On P1(Cv), where Cv is a non-archimedean
field, the Fatou set of a rational map ϕ of degree at least 2 is the domain of equicontinuity.

Definition 1.8 (Non-archimedean Classical Fatou v2). On P1(Cv), where Cv is a non-
archimedean field, the Fatou set of a rational map ϕ of degree at least 2 is the set of points
admitting a neighborhood U that omits 2 points.

Definition 1.9 (Non-archimedean Classical Fatou v3). On P1(Cv), where Cv is a non-
archimedean field, the Fatou set of a rational map ϕ of degree at least 2 is the set of points
admitting a neighborhood U that omits uncountably many points.

These three definitions are all equivalent by Hsia’s non-Archimedean Montel theorem,
which tells us about maps on disks that omit values.

In Berkovich space, we adapt the omitted-points definition to get a notion of Fatou set.

Definition 1.10. On P1
an, given a rational map ϕ of degree at least 2, an open set U ⊂ P1

an

is called dynamically stable if its sequence of iterated images omits infinitely many points.

This is not to be confused with other notions of dynamical stability such as J-stability.

Definition 1.11 (Berkovich Fatou). On P1
an, the Fatou set Fan of a rational map ϕ of degree

at least 2 is the set of points admitting a dynamically stable neighborhood.

There are connections from this definition to equicontinuity and normality, but this is a
complicated story; see [FKT12].

Remark 1.12. Over C, we had the principle that if the forward images of U omit at least 3
points, they in fact omit uncountably many points. This makes one wonder if one can check
dynamical stability by finding finitely many omitted points, which would give an easier-to-
check condition for being in the Berkovich Fatou set. Indeed, with one class of exceptions,
if the iterates of a set U by ϕ omit 3 values, then U is dynamically stable. The exceptions
are exactly Cv = Cp and ϕ(z) = zp

m
for some prime p and integer m ≥ 1. This is [Ben19,

Exercise 8.1].

Definition 1.13 (Julia). In each of these contexts, the Julia set is defined as the complement
of the Fatou set:

J ∶= P1(C) ∖F , JI ∶= P1(Cv) ∖FI, Jan ∶= P1
an ∖Fan.
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The Berkovich Fatou-Julia theory extends the classical one, in the sense that the classical
parts of the Berkovich Fatou and Berkovich Julia sets show up as the classical Fatou and
Julia sets.

Theorem 1.14. For any rational map ϕ of degree at least 2 on Cv, we have

FI = Fan ∩ P1(Cv), JI = Jan ∩ P1(Cv).

For polynomials, one can also consider the filled Julia set over C, which is somewhat easier
to visualize since it has an interior.

Definition 1.15 (Filled Julia). In each of these context, the filled Julia set of a polynomial
of degree 2 is defined as the set of points with bounded orbit:

K ∶= {p ∈ C ∶ lim
n→∞

ϕn(p) ≠∞},

KI ∶= {p ∈ Cv ∶ lim
n→∞

ϕn(p) ≠∞},

Kan ∶= {p ∈ A1
an ∶ limn→∞

ϕn(p) ≠∞}.

Remark 1.16. For the Berkovich filled Julia set, we should think about what it means for a
sequence of Berkovich points ζn to converge to∞ in the Gel’fand topology. Let’s just assume
all the ζn have the same type, since this is what comes up for our application. For Type I
points, convergence to ∞ just means that the absolute values of the points go to ∞. For
Type II, III, and IV points, the ζn converge to ∞ if, viewed as affine disks, the diameters go
to ∞.

Remark 1.17 (Setting expectations). All these Fatou sets are open, because they are defined
by open conditions. Hence all these Julia sets are closed.

● Over C, the Julia set is a closed, perfect, nonempty, compact set. Its interior is empty
or all of P1, which happens e.g. for Lattès maps. Its interior is empty, except for the
Lattès example, which has Julia set all of P1. (Recall that a perfect set is a closed
set with no isolated points). The filled Julia set is closed, compact, and bounded,
and the Julia set is its boundary:

J = ∂K.
● Over P1(Cv), the Julia set is closed, perfect, and has empty interior. But it can be
empty. Indeed it is empty for many examples of interest, including maps of good
reduction. The filled Julia set is closed and bounded, but not necessarily compact.
(The familiar argument that a closed and bounded subset of a locally compact metric
space is compact fails here – no local compactness.) The Julia set is its boundary:

JI = ∂KI.

But the topology is non-intuitive. For instance, the map z ↦ z2 has filled Julia set
D̄(0,1); the boundary is empty, and JI = ∅.
● The Berkovich Julia set is closed, nonempty, compact, and has empty interior. It is ei-
ther a singleton or perfect, and both these possibilities do occur. The filled Berkovich
Julia set is closed, compact, and bounded, and its boundary is the Berkovich Julia
set:

Jan = ∂Kan.
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The following theorem gives us a supply of Berkovich Julia points.

Theorem 1.18. For any rational map ϕ of degree at least 2, every repelling Type II periodic
point is in the Berkovich Julia set Jan.

The Berkovich Julia set detects good reduction.

Theorem 1.19. Let ϕ be a rational map of degree at least 2. The following are equivalent:

(1) The map ϕ has explicit good reduction.
(2) The Gauss point is a repelling fixed point of degree d.
(3) The Gauss point is a totally ramified fixed point.
(4) The Berkovich Julia set is Jan = {ζGauss}.

Since we can change coordinates to move any Type II point to ζGauss, the map ϕ has potential
good reduction if and only if Jan is a single Type II point.

Instead of proving the theorem, we will illustrate it in the case of z2 + λz where ∣λ∣ ≤ 1,
below.

Remark 1.20 (Why this?). The real reason that this definition of the Berkovich Julia set
is the right analogue of the Julia set to consider is that it admits an equilibrium measure,
so it can be studied using ergodic theory. But even without going there, we can see some
evidence that the Berkovich Julia set is better than the classical non-archimedean Julia set.

● It is nonempty.
● It detects good reduction.

A key ingredient is the following lemma.

Lemma 1.21 (Branch repulsion lemma). Suppose that ϕ is a rational map that sends 0⃗ to
0⃗ at ζGauss with local degree at least 2 in that direction. In particular ϕ fixes the Gauss point.
Then every Berkovich neighborhood of ζGauss omits at most 1 point in 0⃗ upon iteration.

For the proof, see Benedetto. A good example to keep in mind is z ↦ z2, which can’t hit
0 ∈ P1(Cv) on the nose.

1.2. Examples. Let K be an algebraically closed, complete non-archimedean field (as usual
in these notes). Every quadratic polynomial overK is conjugate to one of the form z ↦ z2+λz,
because a change of coordinates can be used to move a fixed point to 0. The two cases ∣λ∣ ≤ 1
and ∣λ∣ > 1 have very different non-archimedean dynamics.

Example 1.22. Let ϕ(z) = z2 + λz, where ∣λ∣ ≤ 1. The reduction of ϕ modulo the maximal
ideal of K is simply ϕ̄(z) = z2. The degree did not drop, so ϕ has good reduction.
We claim that

Jan = {ζGauss}.
Let us check directly that JI = ∅. The map ϕ is 1-Lipschitz on sufficiently small P1-disks,

since it has good reduction. Now given any point in P1(Cv), surround it by a small P1-disk;
this is a classical neighborhood witnessing equicontinuity.

Separately from the above argument, we can show that Jan ⊆ {ζGauss}. Let ζ be any
Berkovich point besides ζGauss. Then we may surround ζ by a Berkovich affinoid U that is
contained within one direction from ζGauss. Since ϕ has good reduction, it maps directions at
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ζGauss to directions at ζGauss; or equivalently, it maps residue classes to residue classes. Let
v be the direction containing U .
If the residue field k of K is countable, then k is the algebraic closure of a finite field, and

the orbit of v in P1(k) is necessarily finite. Then ⋃∞n=1 ϕn(U) ⊂ ⋃∞n=1 ϕn(v) omits infinitely
many directions at ζGauss, and these each contain many points, so U is a dynamically stable
neighborhood.

If the residue field k of K is uncountable, then the same argument works, except now we
use the fact that the uncountable set of directions can’t all be hit with the countably many
iterates ϕn(v).

To see that ζGauss ∈ Jan is more difficult. We must show that every neighborhood U of ζGauss

omits only finitely many points upon iteration. To see this, let V ⊆ U be an open Berkovich
affinoid containing ζGauss, which exists by the construction of the Gel’fand topology. Then
there are only finitely many directions v1, . . . , vN out from ζGauss that are not completely
contained in V , by the definition of affinoid. Hence the set of omitted points of ⋃∞n=1 ϕn(U)
is contained in a subset of that set of directions, which is necessarily a finite set {v1, . . . , vn}.
This set is clearly backwards invariant for ϕ, and finite, hence totally invariant and all orbits
are periodic.

Now, replacing ϕ with an iterate ϕm cannot cause the number of omitted points of the set
U to go down, so it suffices to show that for some iterate ϕm, the set of omitted points is
finite. Let ϕm be an iterate that maps each of the directions v1, . . . , vn to itself; this exists
because each of these directions is periodic for the action of ϕ on the reduction P1(k). From
now on we write ϕ in place of ϕm.
Let us show that v1 contains at most one omitted point for the iterates of U . Changing

coordinates, we may assume that v1 is the direction 0⃗ of 0 at ζGauss. Since ϕ−1(0⃗) = {0⃗}, the
local degree of ϕ along 0⃗ is degϕ = 2. Because U is an affinoid, it contains some Berkovich
annulus centered at 0 with outer radius 1. Then use Lemma 1.21.

Example 1.23. Consider the following quadratic polynomial with bad reduction:

ϕ(z) = z2 + λz,

where ∣λ∣ > 1.
The Type I Julia set can be described constructively as a Cantor set. To describe it, we

start with the disk U0 = D̄(0, ∣λ∣). Any point z ∈ P1(Cv) that is not in U0 is in FI, since

∣z∣ > ∣λ∣ Ô⇒ ∣ϕ(z)∣ = ∣z∣2

by the ultrametric triangle inequality. Upon iteration, we see that ∣z∣→∞.
This implies that all iterated inverse images of U0 are also in FI. Let these be called

U1, U2, . . .. Their intersection is a bounded, forward-invariant set, so their intersection is
contained in the filled Julia set KI. In fact KI is exactly this nested intersection, since any
point not in the nested intersection has unbounded orbit by the argument just given. So the
filled Julia set is this Cantor set. The boundary of a Cantor set is itself, so JI = KI.
We claim that JI = Jan. To see this, first let ζ be a Type II or III point of some diameter

r. Eventually the finitely-many constituent disks of Ui are smaller in diameter than r, so for
some i, the set ζ ∖Ui is nonempty. Thus ϕn(ζ) includes a point escaping to ∞, so ζ →∞.
If ζ = lim ζn is a Type IV point, where ζn is a decreasing sequence of disks all with diameter

greater than r, then again there exists Ui such that, for sufficiently large n, all the sets ζn∖Ui
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are empty. Then all these disks ϕi(ζn) are close to ∞, and ϕi(ζ) is their limit, so ϕi(ζ) is
close to infinity.

Example 1.24 (Lattés with bad reduction). We now consider the Lattés map

(1) ϕ(z) = z4 − 8c4z2 − c4
4z3 + z2 + 4c4

.

If ∣c∣ is at least 1, this map has good reduction and so Jan = {ζGauss}.
Suppose now that 0 < ∣c∣ < 1. We claim that the Julia set is a Berkovich interval,

Jan = [ζ(0, ∣c∣2), ζ(0, ∣c∣)].
We prove this directly from the formula for ϕ(z), without using any properties of Lattés
maps.

First we show that JI = ∅. The proof method for this is totally explicit. Using Newton
polygons, one can show the following behavior for Type I points z ∈ P1(Cv) according to the
absolute value ∣z∣.

(1) If ∣z∣ is in (1,∞), then ∣ϕ(z)∣ = ∣ϕ(z)∣2. This comes from computing the absolute
value of the dominant term in the numerator and denominator in (1). So all such z
are in FI.

(2) If ∣z∣ = 1, then either ∣ϕ(z)∣ > 1, in which case z ∈ FI due to the previous bullet; or the
disk D(z,1) is mapped to the disk D(ϕ(z),1) where ∣ϕ(z)∣ = 1. If all iterates of z
have the latter behavior, the iterates of ϕ are 1-Lipschitz near z, so either way z ∈ FI.

(3) If ∣z∣ ≤ ∣c∣2, then either ϕ(z) > 1, so by the first bullet we have z ∈ FI, or ϕ(D(x, ∣c∣2) ⊆
D(ϕ(x),1). In the latter case, the second bullet tells us that z ∈ FI.

(4) If ∣z∣ is in the range (∣c∣2 , ∣c∣), then ∣ϕ(z)∣ < ∣c∣2, and so by the third bullet we have
z ∈ FI.

(5) We have explained the behavior for all z except possibly ∣z∣ = ∣c∣. In this case we have

∣ϕ(x)∣ ≤ ∣c∣2, so the third bullet tells us that z ∈ FI.

Notice the method of proof here was to partition P1(Cv) into several “intervals” which were
mapped to each other in an understandable way. It was easier to understand some of these
properties in terms of disks, which points us naturally to Berkovich space.

We still have a nonempty Berkovich Julia set. Indeed, the Gauss point is a repelling fixed
point of degree 2, since deg ϕ̄ = 2. Thus ζGauss ∈ Jan, and all iterated preimages of ζGauss are
in Jan. These iterated images turn out to be dense in the interval I ∶= [ζ(0, ∣c∣2), ζ(0,1)],
and the Julia set is closed, so the whole interval is in the Julia set. We see this by describing
the dynamics on I exactly. Let I1 = [ζ(0, ∣c∣2), ζ(0, ∣c∣)] and let I2 = [ζ(0, ∣c∣), ζ(0,1)]. Then
ϕ scales I2 to I1 ∪ I2 and I1 to I1 ∪ I2 in the reverse direction. This means we have “tent
dynamics.”

The last step is to show that no points outside I are in Jan. The branch ∞⃗ at ζGauss

is mapped to itself, so that branch is all in Fatou (the direction ∞⃗ gives us a dynamically
stable neighborhood of points in ∞⃗). If a disk has center z with ∣z∣ = 1, the second bullet
above controls the size of the image disks, etc.
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