
MAPPING CLASSES AND CHARACTER VARIETIES

MAX WEINREICH

These are notes on the paper Bers and Hénon, Painlevé and Schrödinger by Serge Cantat
[Can09]. The paper builds a bridge from mapping class dynamics on the 2-manifolds Sg,n =
S1,1 and S0,4 to algebraic dynamics on certain Markoff-like cubic surfaces MD, and more
generally MA,B,C,D in C3 and R3; then this bridge is used to motivate the proofs of some
surprising statements phrased purely in terms of complex and real dynamics. Here Sg,n is
an oriented surface (2-manifold) with n punctures, and for any A,B,C,D ∈ C, the surface
MA,B,C,D is the cubic cut out by

x2 + y2 + z2 − xyz = Ax +By +Cz +D.
The surface MD is the special case M0,0,0,D.
Contents:

● Section 1 introduces Markoff surfaces and Markoff dynamics.
● Section 2 introduces the action of the modular group on H.
● Section 3 introduces the extended mapping class group, its action on character va-
rieties, and explain how this ties the modular group to Markoff dynamics. This
material expands on Section 2.1 of Cantat’s paper.
● Section 4 describes complex Markoff dynamics (Section 3 of Cantat).
● Section 5 briefly describes real Markoff dynamics (Section 5 of Cantat).
● Section 6 considers how different kinds of representations determine invariant loci
in Markoff surfaces, and studies some interesting orbits related to Teichmüller space
(Section 4 of Cantat).
● Section 7 applies real Markoff dynamics to the spectral theory of discrete Schrödinger
operators (Section 6 of Cantat).
● Section 8 desceribes the link from Markoff dynamics to Painlevé VI, a differential
equation (Section 7 of Cantat).

1. The Markoff Surface

The Markoff surface M is defined as the variety in C3 defined by

M ∶= {(x, y, z) ∈ C3 ∶ x2 + y2 + z2 − 3xyz = 0}.
The surface M first studied by Markoff in 1880 as a part of a study on Diophantine approxi-
mation. The Markoff surface is interesting because it admits many nontrivial self-maps that
can all be built out of just three generators. Define

sx ∶M →M,

(x, y, z)↦ (x′, y, z),
where (x′, y, z) is the unique other point on M with these particular y and z coordinates.
There may be points where this point is a double intersection, and these are fixed points of
sx.
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In other words, we have intersected the line parallel to the x-axis through (x, y, z) with
M . We compute x′ by factoring the polynomial X2 + y2 + z2 − 3Xyz ∈ C[X] into its two
factors and taking the factor besides X −x. Since x+x′ is the trace 3yz by Vieta’s formulas,
this gives the explicit formula

x′ = 3yz − x.
We similarly define sy and sz, and we call these three involutions the Vieta switches or

Vieta involutions on M .
The Vieta switches map M(R) to itself, and in fact map the part of M in the positive

orthant (R>0)3 to itself. They generate a group A of algebraic automorphisms of M that is
a free product:

Aut(M) ⊃ A ∶= ⟨sx, sy, sz⟩ ≅
Z
2Z
∗ Z
2Z
∗ Z
2Z
.

Remark 1.1. It is hardly clear from the definitions that these maps generate the claimed free
product. We should worry that some complicated word in sx, sy, sz is somehow the identity.
In fact, one can find a fundamental domain in the part M+ of M in the positive orthant
and prove directly that sx, sy, sz freely generate a tessellation of M+ by ideal triangles; this
is explained visually in a companion paper by Cantat-Loray [CL07, Figure 4], or see Section
6.1. Incidentally, this shows that the trivalent graph representing the orbit of (1,1,1) is
really a tree. (I said this was unknown in my talk, but I was mistaken.)

We also give names to composed pairs:

gx = sz ○ sy,
gy = sx ○ sz,
gz = sy ○ sx.

What are the dynamics of the elements of A?
● The dynamics of one involution, e.g. sx, are trivial.
● Any word that can be expressed in terms of just two of the three involutions sx, sy, sz
preserves a conic fibration, since e.g. gx has the invariant function z and the fibers of
z are conics. On each conic, we have “chess billiards” (see [NT20] for more on this).
But this makes it sound more interesting than it is; really, on each conic gx must be
a Mobius transformation.
● After this, things get difficult. Describing the dynamics of more complicated words,
like sx ○ sy ○ sz, is the subject of Cantat’s paper and this talk.

This group A can be defined in the same way for any of the surfaces MA,B,C,D. The
only important difference is that the Vieta switch formula may be more complicated, and in
particular, the positivity-preserving property of the Vieta switches over R may be lost.

Remark 1.2. There are automorphisms of M not in A, for instance
(x, y, z)↦ (x,−y,−z)

and

(x, y, z)↦ (y, x, z).
But a theorem of El-Huti shows that A is finite index in Aut(M), so any automorphism of

M has an iterate in A [Èl’H74]. So, the dynamics for general automorphisms of M have no
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essential differences from those in A. Further, the same holds for all surfaces MA,B,C,D we
consider, and for a generic surface in this family, we have Aut(MA,B,C,D) = A.
Remark 1.3. Almost no algebraic varieties admit interesting self-maps. This may sound
strange, because obviously An admits lots of self-maps. But a generic variety is of general
type, and a theorem of Matsumura says that projective varieties of general type can admit
only finitely many dominant rational self-maps [Mat63]. So Markoff surfaces are very special.

2. A tale of two trees

There is another source of trivalent trees in our world. The group PSL2(Z) acts on the
upper half-plane H or the open disk D by Möbius transformations. A fundamental domain
for this action on H is the hyperbolic “ideal triangle” with vertices 0, 1, and ∞. The group
PSL2(Z) contains elements that move points in the fundamental domain across the three
edges of the triangle in well-understood ways, to neighboring triangles; this process tessellates
H with distinct triangles. The dual graph of this tessellation reflects that there are elements
of order 2 and 3 in PSL2(Z). In fact, PSL2(Z) can be expressed as a free product

PSL2(Z) ≅
Z
2Z
∗ Z
3Z
.

We extend this to an action of PGL2(Z) on H by letting elements with determinant
−1 act by their complex conjugates (to ensure the image of H is H). We define a group
Γ±2 ⊂ PGL2(Z) to be the subgroup of matrices congruent to the identity modulo 2, in the
entries. The subgroup Γ±2 has a larger fundamental domain – an ideal triangle with vertices
0,2, and ∞ – and a tesselation of H by ideal triangles again, where the dual graph of the
triangular tessellation is a trivalent tree. Thus

Γ±2 ≅
Z
2Z
∗ Z
2Z
∗ Z
2Z
.

Obviously A ≅ Γ±2 as groups. The amazing thing is that this isomorphism is not a coinci-
dence.

Theorem 2.1. There is an explicit isomorphism Γ±2 → A that arises for topological reasons,
that is, via the natural action of the extended mapping class group of S1,1 or S0,4 on its
2-dimensional character variety.

The natural action of Theorem 2.1 is defined in the next section.

3. Natural actions of the mapping class group

Expanded versions of many arguments in this section can be found in the Primer [FM12,
Chapter 2 and 8]. The only difference is that, in Chapter 2, the Primer uses the standard
mapping class group.

The extended mapping class group MCG± of a surface S is defined as the group of self-
homeomorphisms of S, modulo isotopy. It differs from the standard mapping class group in
that we allow for orientation-reversing maps.

Proposition 3.1. The fundamental group of the once-punctured torus S1,1 is a free group F2

on two generators. Thus H1(S1,1) ≅ Z2. The extended mapping class group acts on homology,
inducing a map MCG±(S1,1)→ GL2(Z). In fact, this map is an isomorphism

MCG±(S1,1) ≅ GL2(Z).
3



The fact that the map MCG±(S1,1) → GL2(Z) is surjective follows from finding explicit
examples, which is not hard: we start with linear maps of R2 with Z-coefficients, and descend
to the torus.

For our application, we actually want more refined information about how this map inter-
acts with the fundamental group. Let p ∈ S1,1 be any base point.

We can write
π1(S1,1, p) = ⟨α,β⟩ ≅ F2,

where α,β are paths along the boundary of the diagram; the commutator [α,β] goes once
around the puncture. To see that α,β freely generate π1, use the homotopy equivalence
between S1,1 and S1 ∨ S1.
Given a base point p ∈ S1,1, one would like to have a natural action of MCG± on π1(S1,1, p),

hence a map MCG± → Aut(π1(S1,1, p)). But this doesn’t quite work! The issue is that a
self-homeomorphism f does not necessarily preserve the base point, at least not in a natural
way. We have to choose a path from p to f(p) to get an action on π1. Choosing different
base points or different paths from p to f(p) just conjugates the result, so there is still a
well-defined action on π1(S)/ ∼, and a map

r ∶MCG±(S)→ Out(π1(S)).
Remark 3.2. In fact, the Dehn-Nielsen-Baer theorem says that this map is an isomorphism

MCG±(S) ≅ Out(π1(S)).
But we don’t need this.

The action of MCG± on homology factors through the action on π1(S)/ ∼, so we can
upgrade Proposition 3.1 to

(1) MCG±(S1,1) ≅ Out(π1(S1,1)) ≅ Out(F2) ≅ GL2(Z).
By refining our view of the action of MCG± in this way, we can say exactly what happens

to the commutator.

Proposition 3.3. The natural action of MCG± on π1(S1,1)/ ∼ either fixes or inverts the
class of the commutator [α,β].
Proof. Draw a sufficiently small loop around the puncture. The puncture needed to map to
a puncture, and there is only one; so the result is another small loop around the puncture,
although perhaps the orientation has reversed. □

Remark 3.4. It may be helpful to write out explicitly what r does on words. Let m ∶ S1,1 →
S1,1 be a representative of a mapping class. Up to homotopy, it sends the generators α and
β of F2 to words

m∗(α) = αe1βe′1⋯αejβe′j ,

m∗(β) = αf1βf ′1⋯αfjβf ′j .

The induced matrix of m in GL2(Z) is

[∑ ei ∑ fi∑ e′i ∑ f ′i .
]

Notice that conjugating m by an element of F2 won’t affect the resulting matrix, hence this
operation factors through Out(F2).
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3.1. Character varieties. In this section, we show there is a bijection between (1) a set
containing almost all representations of the fundamental group of S1,1 in SL2 up to conjugacy,
and (2) the affine space A3. A representation of S1,1 is just a pair (A,B) of matrices in SL2,
and we will classify (most of) them up to simultaneous conjugation in SL2.
Given a surface S, let Rep(S) denote the set of representations of the fundamental group

of S into SL2(C). Typically, one is interested in classifying representations up to conjugacy
∼. For finite groups, there are finitely many, classified by character theory; for infinite
groups, there may be infinitely many, and there is not necessarily a nice geometric space
that parametrizes all these representations exactly. Instead, we can build a variety that
parametrizes most representations well.

In the case of free groups, representations can be described by specifying the image of
each generator. This motivates the next definition.

Definition 3.5. Given a free group Fn of rank at least 2, the character variety χ(Fn) for
SL2(C) is the quotient variety

χ(Fn) ∶= (SL2(C))n//SL2(C),
where the action is simultaneous conjugation.

If a surface S has free fundamental group of rank at least 2, we define its character variety
χ(S) to be χ(π1(S)).

Proposition 3.6 (Fricke). We have

χ(S1,1) = (SL2(C) × SL2(C))//SL2(C) ≅ A3,

(A,B)↦ (x, y, z) ∶= (trA, trB, trAB).

We do not quite prove this, but see Section 3.2 for some ideas about how to think about
it.

The symbol // means categorical quotient, and it is an algebraic concept. What it literally
means is that x, y, z generate the ring of conjugation-invariant functions on SL2 ×SL2. Thus
every conjugation-invariant algebraic function on SL2 ×SL2, e.g. tr(AB2A) or tr(ABA−1B1),
can be expressed as a polynomial in terms of these three functions trA, trB, trAB.
For any surface, we saw that MCG± acts on π1(S)/∼, so MCG± also acts on Rep(S)/ ∼.

For S1,1, after identifying with A3, we get an action of MCG±(S1,1) = GL2(Z) on A3 by
algebraic (polynomial) automorphisms.

Given m ∈ MCG±(S1,1), let fm ∶ A3 → A3 be the corresponding map. On the funda-
mental group, this m preserved [α,β] up to conjugacy and inversion. Thus the function
trρ([α,β]) is fm-invariant. Proposition 3.6 that we can expand the conjugation-invariant
function trρ([α,β]) as a polynomial in x, y, z; in fact we have

trρ([α,β]) = x2 + y2 + z2 − xyz − 2.
Thus the whole mapping class group action admits an invariant fibration by level sets of this
function. So for any D ∈ C, there is an algebraic action of the mapping class group GL2(Z)
on the surface

MD∶ x2 + y2 + z2 − xyz =D.
We summarize the main properties of this correspondence in the following elaboration of

Theorem 2.1.
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Theorem 3.7. The map MCG±(S1,1) → GL2(Z) → Aut(MD) conjugates Γ2 to A, modulo
the action of

[−1 0
0 −1]

which reduces to the identity on A3. Thus there is a PGL2(Z)-action on A.
The Vieta switches sx, sy, sz correspond to

[−1 0
−2 1

] , [1 −2
0 −1] , [1 0

0 −1] .

Remark 3.8. The Markoff surface M corresponds to D = 0 after making a minor change of
variables.

Remark 3.9. Categorical quotients come up in algebraic geometry even when you can’t
get a bona fide topological quotient space. You can think of it as meaning A3 is almost a
topological quotient space, but some orbits of the action get mapped to the same point of
A3 (so we can’t tell everything apart). It is easy to see that this is happening for the trace
map above, because if A and B are both upper-triangular, we can’t distinguish them from
their diagonal parts with this map. There is a precise description of the orbits that collapse
this way in terms of the underlying representations, but we don’t need it.

3.2. Intuition for χ(S1,1). We are going to talk about representations of infinite discrete
groups, but to motivate the idea, we should recall some representation theory of finite groups.

For our purposes, a representation of a group G is a group homomorphism ρ ∶ G→ SLN(C),
where N ∈ N. If S is a surface, a representation of that surface is simply a representation
of π1(S). Two representations ρ, ρ′ are considered equivalent or conjugate if a simultaneous
change of basis takes ρ to ρ′.

In the representation theory of finite groups, classifying representations up to conjugacy is
done by classifying associated conjugacy-invariant functions called characters. The character
of a representation ρ of G is the function

χ(ρ) ∶ G→ C,
g ↦ trρ(g).

Writing n ∶= #G, It is helpful to think of the trace as being a map from the set Rep(G) of
all G-representations to Cn, that is,

χ ∶ Rep(G)∼ → Cn.

The ∼ here refers to conjugacy. Since trace is a conjugacy invariant, so is χ. It turns out
that only finitely many χ arise in this way and that they are in 1-1 correspondence with
irreducible representations of G up to conjugacy.
To execute this method for countably infinite groups, our first try would be to define χ

as a CN-valued function. However, for the particular case of representations of free groups
Fk in SL2(C), this χ turns out to have lots of redundacy. We can do much better and only
keep track of finitely many traces.

To illustrate, we will work with F2 = ⟨α,β⟩. Let A = ρ(α),B = ρ(β). The naive trace we
defined kept track of

(1, trA, trB, trA2, trAB, trBA, trB2, . . .).
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Visibly, there is a lot of redundancy in this list because e.g. trAB = trBA. We can use
trace identities to show constructively that in fact all the traces except 1, trA, trB, trAB
are redundant. These trace identities are:

(1) For any matrices,

trMN = trNM

(2) For any invertible matrices,

trM = trN−1MN

(3) In SL2,

trMN−1 + trMN = trM trN

(4) In SL2,

trM = trM−1.

Note that if one specializes to SO2, then these recover cosine identities – pretty neat.
So far, we have indicated why all traces can be reduced to just three. The result of

Proposition 3.6, that χ(S1,1) ≅ A3 via this map, is even stronger; it says that all conjugacy-
invariant functions can be similarly reduced to these three traces, and that there are no
relations between trA, trB, trAB.
Even if we couldn’t come up with such a thing on our own, there are reasons to expect

that variety is a three-dimensional moduli space:

● Since dimSL2 = 3, we expect to have a 3-dimensional moduli space

(SL2 ×SL2)//SL2 .

(But verifying this takes more work; the analogous count for χ(F1) fails because of
nontrivial stabilizers in the action.)
● Single matrices A ∈ SL2 are classified up to conjugation by their traces, except for non-
diagonalizable matrices. This is because the characteristic polynomial of A is X2 −
(trA)X+1. Thus there are at least two conjugation-invariant functions on SL2 ×SL2,
namely trA and trB. A third is provided by the cross-ratio of the eigenvector
directions in P1 of A and B.

Proposition 3.6 has a cute corollary:

Corollary 3.10. Given any two matrices A,B ∈ SL2(C), there is a simultaneous change of
basis in SL2(C) that conjugates A to A−1 and B to B−1.

Proof. The values of x, y, z agree, by the trace identities. This concludes the proof.
A second proof is constructive. Let λ1,1/λ1 be the eigenvalues of A, and let λ2,1/λ2 be the

eigenvalues of B; let the corresponding eigenvector directions be v1, v′1, v2, v
′

2. The change of
basis C, acting on P1(C), needs to take (v1, v′1, v2, v′2) to (v′1, v1, v′2, v2). These two 4-tuples
have the same cross-ratio, so it’s possible.

A third proof is topological, using the hyperelliptic involution on the once-punctured torus
(but I didn’t quite get this). □
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3.3. The 4-punctured sphere. All the ideas in the argument for Theorem 3.7 have direct
analogues for the 4-punctured sphere S0,4. Since the ideas are so similar, we just give a brief
overview of what happens for S0,4.

Theorem 3.11.

(1) The fundamental group π1(S0,4) is generated, with redundancy, by four loops α,β, γ, δ
around the punctures, and

π1(S0,4) = ⟨α,β, γ, δ ∶ αβγδ = 1⟩ ≅ F3.

(2) The extended mapping class group is x

MCG±(S0,4) ≅ PGL2(Z) ⋉ (
Z
2Z
× Z
2Z
) .

(3) The subgroup PGL2(Z) × 1 in the semidirect product contains Γ±2 as a subgroup, and
the action of Γ±2 on π1 fixes each of α,β, γ, δ up to conjugacy and inversion.

(4) The character variety χ(S0,4) is 6-dimensional. There is a map

R ∶ χ(S0,4)→ C7,

ρ↦ (a, b, c, d, x, y, z)
∶= (trρ(α), trρ(β), trρ(γ), trρ(δ),

trρ(αβ), trρ(βγ), trρ(γα)).
There exist A,B,C,D ∈ Z[a, b, c, d] such that the image of R is the hypersurface cut
out by

x2 + y2 + z2 − xyz = Ax +By +Cz +D.
(5) The functions a, b, c, d are invariant for the Γ±2 -action on χ(S0,4), hence so are A, B,

C, D. The map (a, b, c, d) → (A,B,C,D) surjects to C4. Thus Γ±2 acts algebraically
on each surface MA,B,C,D ⊂ C3, for any choices of A,B,C,D.

(6) The map Γ±2 → Aut(MA,B,C,D) identifies Γ±2 with A, with the generators’ images just
as in Theorem 3.7.

Notes on interesting points of difference in the proof:

(1) This is standard topology. We could have also written a redundant presentation for
π1(S1,1).

(2) Mapping classes on S0,4 can be found by taking mapping classes on the 4-punctured
torus S1,4 and descending via the hyperelliptic involution. Mapping classes on S1,4 can
be found by combining translations that stabilize the set of punctures, and the usual
torus mapping classes. We have to do this in a way that respects the hyperelliptic
involution.

(3) The point here is that this copy of Γ±2 fixes the punctures rather than stabilizing them
as a set.

(4) On one hand, it is a theorem that any trace of an element of Fn can be reduced via
trace identities to a polynomial in a certain list of 2n−1 traces; this suggests the map
to C7. (Although this list of traces is not quite standard and I’m not sure this is a
useful perspective to have here.) On the other hand, the dimension count comes from
standard moduli space theory and shows that these traces can’t all be dependent.

(5) The map (a, b, c, d)→ (A,B,C,D) is finite-to-1 but not 1-1.
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(6) This is the same as for S1,1. Put all the previous parts together and see where the
generators of Γ±2 go.

4. Complex dynamics on Markoff surfaces

All that we have discussed so far is fundamental material in the theory of Markoff-like
surfaces. The main theorems of Cantat describe complex and real Markoff dynamics in terms
of the corresponding matrices in Γ±2 . In this section, we describe Cantat’s results for C.
There is a holomorphic nonvanishing 2-form ω on M that is preserved by all the maps in
A, in the sense that if f ∈ A, then f∗ω = ±ω. This means that each f ∈ A is area-preserving or
area-inverting. A similar statement holds for other dynamical systems on character varieties,
e.g. monomial maps.

Instead of working with the affine surface M ∶=MA,B,C,D, we compactify. Let M̄ =M ∪∆
be the projective compactification of M in P3, denoting the boundary at infinity by ∆.
The set ∆ has the structure of an algebraic variety. Working in homogeneous coordinates
[W ∶ X ∶ Y ∶ Z] on P3, the dominant term of the equation for M at infinity is xyz, so the
boundary ∆ is defined by W = 0 and XY Z = 0. So ∆ is a union of three (complex) lines
forming a triangle. The three pairwise intersections will be called the vertices of ∆.

The map f ∶ M → M extends to a birational map f ∶ M̄ ⇢ M̄ . The indeterminacy locus
of f is contained in ∆. Its structure depends on what kind of element of Γ±2 produced f .

From now on, we identify Γ±2 ≅ A via the S0,4-induced isomorphism of Theorem 3.11. (If
you like, little is lost in thinking in terms of S1,1.)

Each element T ∈ PGL2(Z) is either elliptic, parabolic, or hyperbolic. Elliptic elements are
those of finite order. Parabolic elements are those of infinite order that have a nontrivial
Jordan block. Hyperbolic elements are those with eigenvalues λ and 1/λ not equal to 1. We
will always assume that λ is the eigenvalue satisfying ∣λ∣ > 1.
Definition 4.1. An element f ∈ A is hyperbolic if it is induced by a hyperbolic element T
of Γ±2 .

There are many kinds of hyperbolicity in dynamics. These hyperbolic Markoff maps f
turn out to be “hyperbolic” in many other ways. However, for now, the motivation for the
definition is the dictionary from Theorem 3.11:

MCG±(S0,4) ⊃ Γ±2 ≅ A
Finite order ↝ Elliptic ↭ words in one Vieta switch

Dehn twist ↝ Parabolic ↭ words in two Vieta switches

Pseudo-Anosov ↝ Hyperbolic ↭ words in three Vieta switches

Proposition 4.2. If f ∈ A is hyperbolic, then after a birational change of coordinates, the
indeterminacy loci Ind f and Ind f−1 consist of two distinct vertices v− and v+ of ∆, and

f(∆ ∖ {v−}) = {v+}.
In fact, the vertices v− and v+ correspond in a rigorous way to the repelling and attracting

fixed points of the inducing matrix T on ∂H.
We can speak of “bounded orbits” in terms of the standard Euclidean norm on C3, re-

stricted to M .
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From now on, assume f is already conjugated so that the result of Proposition 4.2 holds.
Proposition 4.2 implies that any unbounded f -orbit starting in M is in the attracting basin
of v+. Backwards iterates go towards v−, by symmetry.

Definition 4.3. The filled Julia sets of f are

K+f ∶= {p ∈M ∶ fn(p) /→ v+},
K−f ∶= {p ∈M ∶ f−n(p) /→ v−},
Kf ∶=K+f ∩K−f .

Points in Kf are bounded both forwards and backwards. In particular, all periodic points
of f are contained in Kf .
The “complex hyperbolicity” of f is described in the following theorem. The key insight

is that many dynamical invariants of f can be read from the spectral radius ∣λ(T )∣ of the
inducing matrix T . We denote this quantity by ∣λ(f)∣.
Theorem 4.4 (Cantat). Let f ∈ A be hyperbolic, induced by T ∈ Γ±2 , and in the form of
Proposition 4.2.

(1) The topological entropy of f on M(C) is
htop(f) = htop(T ) = ∣λ(f)∣ .

(2) For all p ∈M ∖K+f , the attraction rate to v+ is

log ∥fn(p)∥ ∼ ∣λ(f)∣n .
(3) As n → ∞, the set Pern(f) of n-periodic points equidistributes to a measure µf of

maximal entropy with support contained in Kf .
(4) Almost all points in Pern(f) are saddle-type, and

#Pern(f) ≈ ∣λ(f)∣n .
(5) There exist plurisubharmonic Green’s functions G+f and G−f , and

µf = ddcG+f ∧ ddcG−f .
This theorem is mostly proved in Iwasaki-Uehara [IU07].

Remark 4.5. All these facts follow from methods in several complex variable dynamics
that were first applied to understand Hénon maps. A Hénon map is a particular kind of
polynomial automorphism of A2 of the form

(x, y)↦ (y, x + P (y)).
These are one of the only types of map on C2 where we understand the dynamics reasonably
well. The key ingredient of the proofs of each statement of Theorem 4.4 is the existence of
boundary points v+ and v− behaving as in Proposition 4.2. In the Hénon case, Such boundary
points also exist on the line at infinity. This is the sole link between Markoff dynamics and
Hénon maps.

If one is not familiar with Hénon maps, a looser analogue is “hyperbolic” monomial maps
on C2, such as µ(x, y) = (xy, x). This map is induced by the hyperbolic matrix

T = [1 1
1 0
] ∈ GL2(Z).
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Hyperbolic monomial maps preserve the 2-form dx/x∧dy/y up to ±1, and have an invariant
set S1×S1 on which the map is a pseudo-Anosov real toral endomorphism. Off that invariant
set, and off the coordinate axes, all points approach a unique superattracting fixed point at
the boundary at a rate equal to ∣λ(T )∣. The periodic points are all contained in S1 ×S1, and
they equidistribute relative to Haar measure, and they are all saddles. (One can think of
this whole example as dynamics on the character variety of S1,0.)
Yet there is a critical difference: the inverse of µ is not a polynomial self-map of C2. It is

more natural to look at this map on (C∗)2, where it has an algebraic inverse. So monomial
maps do not have the nice forwards-backwards time symmetry of Markoff dynamics.

Remark 4.6. In fact, this µ commutes with (x, y) ↦ (x−1, y−1), and taking an appropriate
quotient allows one to conjugate the dynamics of µ to Markoff dynamics on a particular
Markoff-like surface called the Cayley cubic.

5. Real dynamics on Markoff-type surfaces

LetM ∶=MA,B,C,D be a Markoff-type surface. If all the parameters A,B,C,D ∈ R, then all
the maps in A restrict to self-maps of the real part M(R). The topology of M(R) depends
on the parameters. For convenience we will assume A,B,C = 0 and D > 4; this guarantees
that M(R) is connected, and that is a hypothesis in Cantat’s analysis of the real dynamics.

Theorem 5.1 (Cantat). Assume M ∶= MA,B,C,D has real parameters and that its real part
is connected.

(1) The complex filled Julia set Kf is contained in the real locus M(R). In particular,
all periodic points of f are real.

(2) On Kf , the map f is uniformly hyperbolic.

6. Cool orbits (Bers)

Let’s summarize the picture so far. There are natural actions of the extended mapping
class group MCG± on π1(S)/ ∼ and on χ(S). In the case of S = S1,1 and S = S0,4, the action on
π1(S)/ ∼ stabilizes the set of loops around punctures, up to inversion of loops. This provides
extra structure, in the following way. Working with a subgroup Γ±2 of MCG±, the conjugacy
classes of these loops are all fixed up to inversion, so there is an invariant fibration of χ(S)
for the action. The invariant fibers are denoted MD in the case of S1,1, and MA,B,C,D in the
case of S0,4, and the latter family specializes to the former. The automorphisms of MA,B,C,D

obtained from this recipe form a set denoted A. Hyperbolic elements of MCG± ≅ PGL2(Z)
give rise to the most interesting elements of A.

We will mostly discuss MD in this section. The fundamental group π1(S1,1) is generated
by two loops α and β. The definition of D is

D ∶= trρ([α,β]) + 2.
Since the surfacesMA,B,C,D are moduli spaces of SL2(C)-representations, we should expect

their geometry to reflect the representations they parameterize. For instance, what are the
real points of MA,B,C,D?
Let M be a surface in this family. Each R-point of M represents a SL2(R)-representation

or a SU2-representation. Since SU2 is compact and connected, the corresponding locus in M
is compact and connected.
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Remark 6.1. The fact that classes of SU2-representations are defined over R can be seen in
two ways. First, there is the general fact that matrices in SU2 have real trace. Second, we
can consider “field of definition vs. field of moduli”. The key observation here is that a pair
(A,B) ∈ SL2(C) × SL2(C) generating an irreducible representation can be simultaneously
conjugated to (A−1,B−1); we showed this in Section 3.2. For special unitary representations
we thus have

(Ā, B̄) = (A−1,B−1) ∼ (A,B),
so the pair (A,B) is invariant for complex conjugation up to matrix conjugation. It thus
descends to a real point of the quotient.

Example 6.2. Choosing D = 0, the surface M0 has five real components. Four of them
are unbounded, simply-connected smooth sheets. The fifth is the singleton {(0,0,0)}, a
singularity. Viewing M0 as a character variety, the point (0,0,0) corresponds to the class
of the representation with image equal to the quaternion group. Indeed, the quaternion
representation is in SU2.

Example 6.3. Choosing D = 2, the surface M2 has five real components. They are all
smooth. Four are unbounded, and one of these is inside the positive orthant. The fifth
is homeomorphic to S2, consists of special unitary representations’ classes, and is denoted
MSU.

Example 6.4. Choosing D = 4 produces the surfaceM4, called the Cayley cubic. It appears
all over the place; one way it arises is as the quotient of C2 by (x, y) ↦ (x−1, y−1). The
Cayley cubic has four singularities and one connected real component.

Example 6.5. When D > 4, the surface MD is connected, smooth, and homeomorphic to a
4-punctured sphere.

Remark 6.6. The dependence of the topology of the real locus on the parameters A,B,C,D
is more complicated and is largely worked out in [BG99].

One reason that the moduli space perspective is very powerful for understanding the
dynamics of Γ±2 on MA,B,C,D is that it furnishes invariant subsets. We should think of
elements of Γ±2 as being automorphism-like operations on representations (speaking loosely):
they don’t really change the representation, but rather the choice of generators. Thus any
generator-independent property of the representation gives rise to an invariant subset of Γ±2 .
(This is just informal language, since an automorphism of a representation is something
different, literally speaking – it is a self-conjugacy.)

In particular, let DF ⊂ MD(C) be the locus of classes of discrete, faithful representa-
tions, and let MSU

D ⊂ MD(R) denote the locus of classes of special unitary representations.
Then DF and MSU are invariant subsets. These two subsets contain very different kinds of
representations! A typical SU2-representation is not discrete.

Using a refinement of Theorem 4.4, which characterized complex dynamics of Markoff
maps, Cantat constructs interesting orbits of the Γ±2 -action on M . These orbits have the
counterintuitive property that they have limit points in both the special unitary set and the
discrete faithful set.

Theorem 6.7 (Cantat).
12



(1) In M0, there is a hyperbolic element f ∈ A and an f -orbit with both (0,0,0) and a
discrete, faithful representation class in its closure.

(2) In M2, there is a Γ±2 -orbit with all of the special unitary locus MSU
2 and a discrete

faithful representation class in its closure.

We sketch the proof of (2). The idea is that, for a particular f ∈ A, namely

f = [2 1
1 1
] ,

there exist saddle fixed points in both M2
SU and in DF. There is a heteroclinic intersection

h for this pair of saddle fixed points (this means that the stable and unstable manifolds
intersect). Thus following h forward and backward, one gets a point of DF and a point ρSU
of MSU

2 in the closure. Then one shows that ρSU has dense MCG±-orbit in MSU
2 .

6.1. Saddle fixed points from Teichmüller space. Warning: my understanding of this
part is hazy!

The proof of Theorem 6.7 (2) is easy to verify but hard to discover. One can verify that
the claimed saddle points exist once you know where to look by computing the differential
of f as a map on C3, but one must know where these saddle points are and what kinds of
representations they correspond to.

Remarkably, the action of PGL2(Z) on the open complex unit disk D is conjugate to the
action of PGL2(Z) on MD. The complex disk D is the Teichmüller space of S1,1 consisting
of hyperbolic metrics of a fixed finite volume. Points in D also correspond to complex
structures on S1,1 up to an appropriate equivalence relation, in a topologically nice way.
Complex structures (and hyperbolic metrics) can be pulled back along mapping classes, so
Γ±2 acts on D, and it turns out that this action is the standard one by Möbius transformations
(and their complex conjugates). The conjugating map

D→M0

is constructed as follows. A point in Teichmüller space endows S1,1 with a hyperbolic metric
of finite volume. The Uniformization Theorem says that the universal cover of S1,1 is D and
that S1,1 with the chosen metric is the quotient of D by a group of isometries. Each path
of π1(S1,1) gives rise to a PSL2(Z)-element that moves us correctly along that path in the
model D of the universal cover, and this correspondence is a group homomorphism. That
representation on π1(S1,1) in PSL2(Z) can be lifted in four ways to SL2(R), landing us in
A3 in four different ways. Note that the PSL2(Z) element that moves you along path [α,β]
in the universal cover D must fix exactly one point on the boundary ∂D, a cusp. So [α,β]
has a parabolic image up to some sign change, so you land in M0. The four lifts correspond
to the four unbounded components in M0(R).

This correspondence gives us a map

D→M0(R)+

that conjugates the mapping class group dynamics on each side. In fact, this map is bijective
and real-analytic!

So, one idea for coming up with fixed points is to import them from the action of Γ±2 on
D, as follows. Background knowledge on hyperbolic isometries tells us that every hyperbolic
isometry of D has two fixed points on the boundary ∂D: one attracting, one repelling. The
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conjugacy from D to M0(R)+ would transfer the fixed points on ∂D in a useful way, if the
conjugacy extended to that boundary. Unfortunately, it does not; the fixed points on ∂D
turn out to correspond to indeterminacy on the boundary ∆ of M̄0.
Nevertheless, we can do something similar using Bers’ parametrization of the quasi-

Fuchsian locus, which is a kind of “simultaneous uniformization theorem.” Let QF denote
the subset of M0(C) consisting of quasi-Fuchsian representations; these are deformations of
M0(R)+ in the discrete faithful locus, and QF is exactly the interior of the discrete faithful
locus. Bers gives a map

H × −H→ QF

that, in a certain sense, is natural for mapping class dynamics. This map extends to the
boundary by work of Minsky [Min03], and McMullen proved that the corresponding fixed
points in ∂QF ⊆ DF are saddle points [McM96].

7. Discrete Schrödinger Operators

There is a surprising application of Markoff dynamics to Schrödinger operators; see e.g.
[Cas86]. We give a brief overview of this connection and Cantat’s contribution. Cantat
proves a result describing how the spectrum of discrete Schrödinger operators changes along
1-parameter families.

Definition 7.1. Let v be a bounded function Z → C. The discrete Schrödinger operator
with potential v is the bounded linear operator

Hv ∶ ℓ2(Z)→ ℓ2(Z),
[Hvψ](i) = ψ(i − 1) + ψ(i + 1) − v(i)ψ(i).

If v ≡ 0, then we have the discrete Laplacian operator

∆ ∶ ℓ2(Z)→ ℓ2(Z),
[∆ψ](i) = ψ(i − 1) + ψ(i + 1).

Remark 7.2. The normalization of the discrete Laplacian is unfortunate here, but we choose
it for consistency with our main reference [DF22]. In our opinion, the discrete Laplacian
should be ∆ − 2. But this is a minor quibble, since in terms of spectral theory, one can go
back and forth between ∆ and ∆ − 2 easily.

The discrete Laplacian is one of the most fundamental operators in mathematics. Schrödinger
operators can be thought of as deformations of the Laplacian. In particular, one can ask
about the behavior of Schrodinger operators approaching the Laplacian.

For finite-dimensional vector spaces, the spectrum is the set of eigenvalues, which are roots
of the characteristic polynomial, so they vary algebraically in 1-parameter families of maps,
determining a spectral curve. In the infinite-dimensional setting, the spectrum is some subset
of C, and it is much more delicate to say how it varies in 1-parameter families.

However, there is at least one class of discrete Schrödinger operators that we understand
well: the real periodic ones, that is, those for which the potential v is n-periodic for some
n ∈ N. In this case, the spectrum Hv is a union of at most n compact real intervals. As Hv

moves in 1-parameter families, the endpoints of these intervals move algebraically.
Outside the world of periodic potentials, it is difficult to describe the spectra of Schrödinger

operators. A natural place to start is to come up with almost-periodic potentials, whatever
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that means. One specific kind of almost-periodicity is quasi-periodicity, which comes from
dynamics.

Theorem 7.3 (Cantat, slogan form). In certain 1-parameter families of (quasi-periodic)
dynamically-defined potentials valued in a two-element set {v1, v2} ⊂ R (obtained from sym-
bolic dynamics on 2 symbols conjugate to an irrational rotation), the Hausdorff dimension
HDimσ(Hv) varies real-analytically.

One can ask about the spectrum of a random Schrödinger operator, meaning that the
potential v is sampled from some probability space. This is very hard, but we can get
more structure by asking for the samples to come from symbolic dynamics with an ergodic
measure; these are called “dynamically defined” potentials. In this situation, the spectrum
σ(Hv) is defined up to a measure 0 subset of the probability space.

7.1. Details. A Banach space is a vector space equipped with a norm; we will only be
interested in the Banach space ℓ2(Z) of square-summable sequences Z → C, which is also a
Hilbert space. A linear map of infinite-dimensional Banach spaces is called a linear operator.
A linear operator H ∶ V → W is bounded if there is a constant C such that, for all vectors
v ∈ V of norm 1, the image Hv has norm at most C. The set of bounded operators forms a
vector space denoted B(V,W ).

Definition 7.4. Let V be a Banach space, and let I denote the identity operator V → V .
The spectrum σ(H) of a linear operator H ∶ V → V is the set

{E ∈ C ∶H −EI has an inverse in B(V,V )}.
An eigenvalue of H is a value E ∈ C such that the eigenvalue equation can be solved for
some ψ ∈ V :

Hψ = Eψ.

Try to forget everything you know from finite-dimensional linear algebra. For linear opera-
tors, the eigenvalue set is contained in the spectrum, but there can be points in the spectrum
that are not eigenvalues, because of the issues of boundedness and square-summability.

Example 7.5. Let z ∶ Z→ C be a bounded sequence of complex numbers, and consider the
linear operator

Z ∶ ℓ2(Z)→ ℓ2(Z),
[Zψ](i) = z(i)ψ(i).

Then the set of eigenvalues is the set z(Z) = {z(i) ∶ i ∈ Z}. To see this, consider vectors ψ
with all 0 except a 1 in position i; this is a z(i)-eigenvector. There are no other eigenvalues,
as we can see by considering the effect on Z in each position i ∈ Z. Yet the spectrum σ(Z)
is the closure z(Z). Indeed, for each E outside z(Z), there is an inverse linear operator
(Z −E)−1 ∶ ℓ2(Z)→ ℓ2(Z) defined by

[Z−1ψ](i) = 1

z(i) −Eψ(i).

This inverse is a bounded operator if and only if 1/(z(i)−E) is bounded as a sequence in C.
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The spectrum of a bounded operator H is a nonempty, compact subset of C. In fact σ(H)
is contained in the closed ball centered at 0 of radius equal to the operator norm of H, which
is the infimum of all constants C for H in the definition of bounded operator. If the operator
is also self-adjoint, then the spectrum is contained in R, by a Spectral Theorem.

Example 7.6. The discrete Laplacian is bounded, with operator norm 2, is self-adjoint, and
has spectrum σ(∆) = [−2,2]. (The remarks above show σ(∆) ⊆ [−2,2].)
We show that ∆ has no eigenvalues. Suppose E ∈ C; let us attempt to solve

(2) (∆ −E)ψ = 0
A choice of initial conditions for this difference equation (2) is a pair ψ1, ψ2 ∈ C. Any choice
of initial conditions determines a unique sequence ψ ∈ CZ satisfying the difference equation,
as follows. The transfer matrix Ti depending on E, for each i ∈ Z, is the matrix

Ti = [
E −1
1 0

] .

A sequence ψ ∈ CZ satisfies (2) if and only if, for each i ∈ Z, the matrix Ti satisfies

Ti [
ψi

ψi−1
] = [ψi+1

ψi
] .

Thus there is a 1-1 correspondence between the space C2 of choices of initial conditions and
the space of solutions in CZ. Further, no nontrivial solution in CZ decays bi-infinitely, that
is, as n goes to ∞ and −∞, because Ti always has an eigenvalue at least 1.

Example 7.6 generalizes readily to any discrete Schrödinger operator, but the transfer
matrices Ti do actually depend on i in general.

Example 7.7. If v is an n-periodic potential, then the transfer matrices Ti are n-periodic
in i. Choices of initial conditions and transfer matrices are defined as in Example 7.6. Since
(Hv − E)ψ = 0 is a linear difference equation, acting on the choice of initial conditions by
a linear transformation in GL2(C) has the effect of transforming all solutions in ψ by the
same amount. The operator that shifts ψ by n units to the right commutes with Hv − E
(by periodicity), so the growth of the solutions is controlled by the monodromy matrices
Tn . . . T1. This is essentially the reason why the spectrum varies algebraically in 1-parameter
families: the monodromy is on a finite-dimensional space.

Let R be a substitution rule on two letters, that is, a pair of words wa and wb in two
letters a, b, viewed as a self-map of the set of all finite words in {a, b} by the rule a ↦ wa,
b ↦ wb, with concatenation. If R is induced by a hyperbolic automorphism of F2, then it
is primitive (we will not define this carefully). By basic symbolic dynamics, any primitive
rule R has a unique infinite fixed word wR ∶ N→ {a, b}. Let Ω be the ω-limit set of the shift
operator applied to any left completion of wR in the space of bi-infinite words. Then Ω is
an invariant set for wR that admits an ergodic measure.

Remark 7.8. here is a way of framing all this as the dynamics of a quadratic irrational
rotation. The most famous example is the Fibonacci substitution, which gives rise to the
“Fibonacci Hamiltonian.”

Definition 7.9. A quasi-periodic potential for rule R is a potential v ∶ Z → R given by any
element w of Ω and v(i) = 0 if w(i) = a, v(i) = 1 if w(i) = b.
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The spectrum of Hv is the same for almost any v obtained from Ω; it is called the almost
sure spectrum of the rule R. This also applies to any scaling κv of v, where κ ∈ R, so we can
define the almost sure spectrum of the pair (R,κ). The formal statement of Theorem 7.3 is:

Theorem 7.10. Fix a primitive substitution rule R. The Hausdorff dimension of the almost
sure spectrum of (R,κ) varies analytically in κ.

The idea of the proof is that, for fixed E and κ, there are only two distinct transfer matrices,
because the potential is only two-valued. This provides a SL2(R(E,k))-representation of the
free group on two generators. This provides a map of a rational curve, the Schrödinger curve,
parametrized by E to the character variety A3(R(k)). One can show that a point is in the
spectrum for f if and only if the f -orbit of the corresponding representation is bounded. As κ
varies, so does the intersection of the curve with the forward Julia set. (Note that the Markoff
surface that one lands in varies with κ.) Then hyperbolic dynamics and thermodynamical
formalism tell you everything.

8. Painlevé with rich monodromy

Warning: this is not my area of expertise! I recommend [RR21] and [Wik22] for further
information. There is also a nice series of video lectures on foliations by Loray that one can
find on YouTube.

The final application of Markoff dynamics is to the monodromy of the Painlevé VI differ-
ential equation,

q′′ = 1

2
(1
q
+ 1

q − 1 +
1

q − t) (q
′)2 + (1

t
+ 1

t − 1 +
1

q − t) q
′

+ q(q − 1)(q − t)
t2(t − 1)2 (α + β q

t
+ γ t − 1
(q − 1)2 + δ

t(t − 1)
(q − t)2) .

The exact form of the equation does not concern us. What matters are the following aspects
of the equation:

● We work over C. The independent (time) variable is t, and the dependent variable
is q. It is a second-order nonlinear differential equation that happens to be linear in
q′′.
● There are four parameters α,β, γ, δ ∈ C. Each choice of parameters is a special case
of Painlevé VI.
● The Painlevé property : except on a finite subset X of P1

C (with variable t), every so-
lution q(t) to Painlevé VI can be meromorphically continued. We have X = {0,1,∞}.
There are also moving singularities (i.e. singularities that move with the choice of
initial conditions), but these are just poles, so they do not prevent meromorphic
continuation.

Remark 8.1. An example of an ODE that does not satisfy the Painlevé property is dq/dt =
1
2q . This can be solved with separation of variables, and the solutions q = ±

√
t + c cannot

be meromorphically continued through t = c, where c depends on t. Such singularities are
called movable.

The Painlevé I-VI differential equations are six families of second-order differential equa-
tions with the above properties.
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One motivating interest in the Painlevé equations is to define new special functions, con-
structed as solutions of ODEs, that cannot be expressed in terms of classical special functions
such as ex. The Painlevé property is a very restrictive one and provides special functions
with a lot of structure.

In the case of first-order ODEs, the only ODEs with the Painlevé property that give new
special functions are the Riccati and Weierstrass equations. Painlevé I-VI are a complete
set of second-order ODEs for the solutions that are new in second order.

Note also that, for certain members of the Painlevé families (that is, certain choices of
parameters), the solutions behave in a very special way; for instance, they might be algebraic.
The specialness of the solutions is only a generic feature of the family of differential equations.

8.1. Connection to Markoff dynamics. The naive phase space of Painlevé VI is C3,
with coordinates t, q, q′, where q′ = ∂q/∂t. This is because knowledge of q, q′, t determines
knowledge of q′, q′′, t, hence gives us a complex vector field on C3. The vector field defines
a meromorphic foliation of C3 of dimension 1. Given t ∈ P1 ∖ X, the fiber consisting of
all points (q, q′, t) above t is isomorphic to C2. Any path in P1 ∖ X gives rise to a dif-
feomorphism C2 → C2 obtained by following the foliation as t goes along that curve. The
resulting diffeomorphism is well-defined up to homotopy of the path, so we get a monodromy
representation

(3) π1(P1 ∖X)→ Diff(C2).

Amazingly, this action is essentially the same as Markoff dynamics. There is a transcendental
map, the Riemann-Hilbert map, that conjugates C2 to an appropriateMA,B,C,D, taking these
diffeomorphisms to Markoff dynamics.

The link between Painlevé VI and Markoff dynamics is via the notion of isomonodromic
deformation.

A Fuchsian system of ODEs is a linear complex ODE with a finite set of singularities
in P1

C with variable t, all of which are simple poles. A second-order Fuchsian system with
singularities at T = {t1, . . . , tn} has phase space C2 × (P1 ∖ T ). A loop in P1 ∖ T gives rise to
a self-map of C2, via the monodromy representation. (Same notion as in (3), but different
setting). The linearity hypothesis implies that this self-map is linear, so the monodromy
representation lands in GL2(C). The Riemann-Hilbert map takes a Fuchsian system to its
monodromy representation.

If T consists of just four elements, then one can normalize by assuming that some three
of the elements are 0,1, and ∞, and letting the last element be called t. As t varies, the
monodromy changes, but we can vary the other parameters of the Fuchsian system to force
the monodromy to stay the same. Then we obtain an isomonodromic family of Fuchsian
systems. The Painlevé VI equation arises in nature as the ODE that the parameters of the
Fuchsian system must satisfy in an isomonodromic family. Thus each solution of Painlevé
VI parameterizes an isomonodromic family of Fuchsian systems.

Mapping classes act on P1 ∖ T , hence also on each solution of Painlevé VI.

Remark 8.2. There is a nice partial compactification of the Painlevé phase space using
Hirzebruch surfaces that resolves some singularities of the system.
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